sábado, 22 de febrero de 2014

Obtención de las fibras sintéticas y especiales.

Obtención de las fibras

El proceso de polimerización, aplicado a determinadas materias primas, permite la obtención de fibras sintéticas. Los polímeros son moléculas orgánicas complejas, formadas como resultado de la unión de varias moléculas orgánicas simples, los monómeros. 

Al constituirse un polímero, los monómeros forman entre sí una larga cadena lineal, con extraordinarias condiciones de ligereza, elasticidad y resistencia. Dichas propiedades son fundamentales para la fabricación de todo tipo de fibras. En este sentido, los polímeros se emplean, además de para fabricar tejidos, en la elaboración de plásticos, productos estructurales diseñados para resistir esfuerzos —parachoques de automóviles, tuberías—, aislantes, filtros, cosméticos, así como en la industria eléctrica, electromecánica, del mueble o de la construcción. 

Las fibras sintéticas se pueden clasificar en: políamidas, poliésteres, poliacrílicas, polivinilos y polipropilénicas.

















La elaboración de fibras sintéticas textiles se realiza a partir de materias primas que se encuentran con relativa facilidad y son, en términos generales, poco costosas: carbón, alquitrán, amoniaco, petróleo, además de subproductos derivados de procesos industriales. 

Las operaciones químicas realizadas con estos materiales permiten obtener resinas sintéticas que, tras su hilado y solidificación, resultan elásticas, ligeras y muy resistentes tanto al desgaste como a la presencia de ácidos u otros agentes externos. La incorporación de un colorante al polímero permite teñir el material antes de su hilado, lo que se traduce en un óptimo nivel de estabilidad cromática en la fibra, que, además de no desteñir, elimina la necesidad de recurrir a posteriores operaciones de fijado del tinte.

Obtenidas por POLÍMEROS POR POLI-CONDENSACIÓN

Obtenidos por la unión de los monómeros con pérdida de agua en la formación del polímero. Constituyen las fibras con más difusión dentro de las sintéticas, y son:

Fibras de poliéster
Desde la primera década del siglo XX, comenzaron las investigaciones para la obtención de una fibra sintética de poliéster, pero recién en 1945 se patenta una fibra sintética de poli(etilentereftalato)(PET) y comienza diez años más tarde la producción industrial a partir de etilén glicol y dimetil tereftalato por trans-esterificación, bajo el nombre comercial de Terylene (ICI). Años después se comercializa la segunda fibra comercial bajo el nombre de Dacron (DuPont). La evolución hacia otros polímeros poliestéricos ha sido lenta y con resultados acotados. Así surgió la poli (1,4-cicloexadimetilentereftalato) (Eastman, 1958) y más recientemente poli (butilentereftalato) (PBT, 1974). Las fibras de poliéster se utilizan en forma de filamento continuo o cortadas. Debido a las excelentes propiedades de la fibra poliéster, se emplean también mezcladas con fibras naturales (algodón, lana, lino), artificiales (rayón viscosa, acetato y triacetato) y otras fibras sintéticas (acrílicas).



Fibras de poliamida

La investigación y desarrollo sobre la obtención de una fibra de poliamida, se remonta a las primeras décadas de 1900. El descubridor de la primera de ellas fue Wallace Hume Carothers en 1935, patentado en 1938 bajo el nombre comercial Nylon (DuPont). Se obtuvo por el método de condensación del ácido hexanodioico con hexametilendiamina. La cantidad de átomos de carbono en las cadenas de la amina y del ácido se indican detrás de las iniciales de poliamida, en este caso es PA 6.6.
Una excepción a los polímeros de policondensación que conforman este grupo, la constituye otra poliamida: PA 6, que es obtenida por poliadición, a partir de caprolactama, descubierta por Paul Schlack in 1938, comercializada recién en 1952 bajo la marca registrada Perlon (Bayer).
En las siguientes décadas se desarrollaron nuevos tipos de fibras poliamídicas (PA 6.10, PA 6.12, PA 11, PA 12, y copolímeros de PA 6 y 6.6). Las nuevas características técnicas en cuanto a las propiedades de la fibra de poliamida, generaron nuevos usos en diversos mercados.



Obtenida por POLÍMEROS POR POLI-ADICIÓN

Obtenidos de monómeros que poseen dobles enlaces en sus moléculas y cuya ruptura hace posible la unión de dichas moléculas entre si. Las fibras más importantes comercialmente son:

Fibras acrílicas

Las fibras de poliacrílicas o fibras acrílicas (como se las conoce habitualmente) son fibras sintéticas obtenidas por polimerización de adición del monómero acrilonitrilo. Este fue descubierto en 1893 en Alemania. Los trabajos de desarrollo más importantes fueron llevados a cabo por W. H. Carothers y su equipo en la compañía DuPont. Recién en 1929 se patentó este polímero y no fué hasta 1944 que DuPont anuncia el desarrollo de la fibra acrílica. Seis años más tarde inicia la producción comercial con el nombre de Orlon.
Al principio, las fibras elaboradas con 100 % de acrilonitrilo, presentaban una estructura interna compacta, con una alta orientación estérica, que hacía imposible teñirla. El problema fue resuelto por la incorporación de hasta un 15 % de otros monómeros, para conformar copolímeros que producen una estructura más abierta, lo cual permite la tintura en forma exitosa.
Las propiedades fisicoquímicas de las fibras acrílicas, permiten obtener productos textiles con buena resiliencia, retención de pliegues, recuperación de arrugas, fácil cuidado y propiedades wash and wear. Estas propiedades solo son superadas por las fibras de poliéster.




Fibras de elastano

Las fibras de elastano o fibras de poliuretano, son fibras sintéticas de un polímero termoplástico basado en la reacción de un diisocianato con un alcohol alifático. Los trabajos de investigación comenzaron en Alemania a mediados del siglo XIX, pero recién un siglo más tarde Otto Bayer (IG Farben, 1937) logra la primera síntesis de laboratorio de un poliuretano, que es patentado ese mismo año. Tres años más tarde se comienza con la comercialización de la fibra con los  nombres de Igamid y Perlon. Casi 20 años después la firma DuPont lanza al mercado fibras de poliuretano denominadas genericamente como spandex o fibras de elastano.
Los poliuretanos también pueden generar polímeros rígidos (espumas, plásticos) que no tienen aplicación como fibras textiles. En cambio los poliuretanos flexibles, se clasifican como elastómeros, que son aquellos polímeros que desarrollan un comportamiento elástico. Pueden ser tanto termoplásticos como termoestables, ya que la elasticidad depende de los enlaces covalentes del polímero (resilencia) y la capacidad de las largas cadenas moleculares, de acomodarse por si mismas, bajo los efectos de una tensión  externa (estiramiento). Las fibras de poliuretano flexible, pueden alargarse desde una décima parte de su longitud sin tensión hasta siete veces dicha longitud.














Otras Fibras 

Existen en el mercado otras fibras sintéticas obtenidas por el mecanismo de poliadición, que revisten menor importancia en cuanto a su uso como fibras textiles, dado que sus limitadas propiedades fisico-químicas restringen su uso a casos muy específcos.
Entre las fibras de uso textil orientado al sector de textiles técnicos o decoración se encuentran las fibras de polipropileno, polietileno y polivinilo. Ello es debido a que presentan algunas limitaciones para su uso en indumentaria, como baja estabilidad al calor en el caso de las fibras polivinílicas o por la falta de confort en los otros dos casos (polietileno y polipropileno), entre otras causas.
Fibra de carbono vista con  una lupa


Fibra de carbono 

La fibra de carbono es una fibra sintética constituida por finos filamentos de 5–10 μm de diámetro y compuesto principalmente por carbono. Cada filamento de carbono es la unión de muchas miles de fibras de carbono. Se trata de una fibra sintética porque se fabrica a partir del poliacrilonitrilo. Tiene propiedades mecánicas similares al acero y es tan ligera como la madera o el plástico. Por su dureza tiene mayor resistencia al impacto que el acero.


Se obtienen mediante un proceso de descomposición térmica de tres precursores principalmente (Rayon, PAN, Pitch). De estos tres precursores el más utilizado para la obtención de las fibras de carbono es el poliacrilonotrilo (PAN).

De forma muy resumida el proceso de obtención de fibra de carbono podría esquematizarse en tres etapas fundamentalmente: oxidación bajo tensión a 200-300ºC, carbonización en atmósfera inerte entre 1000-1700ºC y grafitización en atmósfera inerte entre 1700 y 3000ºC.

Las altas características mecánicas de las fibras de carbono son debidas al alto grado de orientación de los cristales a lo largo de los ejes de las fibras. Dependiendo del proceso de fabricación se obtienen fibras de alta resistencia y alargamiento a la rotura o fibras de alto módulo (llamadas fibras de grafito) de gran aplicación en el campo aeroespacial.

Las mejores propiedades de la fibra de carbono son:

  • Alta resistencia especifica

  • Alto módulo específico

  • Buena resistencia a disolventes orgánicos

  • Inerte frente a la humedad y los disolventes


Fibra de vidrio


La fibra de vidrio es la única fibra de origen inorgánico (mineral) que se utiliza a gran escala en los tejidos corrientes. Se fabrica moldeando o soplando el vidrio fundido hasta formar hilos.
Es posible producir fibras de vidrio —que pueden tejerse como las fibras textiles— estirando vidrio fundido hasta diámetros inferiores a una centésima de milímetro.

El buen aislamiento térmico, la estabilidad frente a reactivos químicos y la resistencia a altas temperaturas, la convierten en una fibra ideal para múltiples usos. Filamentos de diámetro extremadamente pequeño (0,005mm) hace posible el doblado y retorcido como cualquier fibra sintética, para obtenerse una variedad de hilos comerciales que luego pueden ser tejidos bajo la modalidad de tafetas, sargas o satenes. Combinados con otras fibras se obtiene una vastísima posibilidad de aplicación textil. Algunos usos finales son: chalecos blindados, pantallas, asientos, bolsas de dormir, telas plásticas reforzadas, etc.








Kevlar

El Kevlar® o poliparafenileno tereftalamida es una poliamida sintetizada por primera vez en 1965 por la química polaco-estadounidense Stephanie Kwolek (1923-), quien trabajaba para DuPont. La obtención de las fibras de kevlar fue complicada, destacando el aporte de Herbert Blades, que solucionó el problema de qué disolvente emplear para el procesado. Finalmente, DuPont empezó a comercializarlo en 1972. Es muy resistente y su mecanización resulta muy difícil. A finales de los años setenta, la empresa Azko desarrolló una fibra con estructura química similar que posteriormente comercializó con el nombre de Twaron.
La ligereza y la resistencia a la rotura excepcional de estas poliaramidas hacen que sean empleadas en neumáticos, velas náuticas o en chalecos antibalas.


Propiedades mecánica

Rigidez

El kevlar posee una excepcional rigidez para tratarse de una fibra polimérica. El valor del módulo de elasticidad a temperatura ambiente es de entorno a 80 GPa (kevlar 29) y 120 (kevlar 49). El valor de un acero típico es de 200 GPa.

Resistencia

El kevlar posee una excepcional resistencia a la tracción, de entorno a los 3,5 GPa. En cambio el acero tiene una resistencia de 1,5 GPa. La excepcional resistencia del kevlar (y de otras poliarilamidas similares) se debe a la orientación de sus cadenas moleculares, en dirección del eje de la fibra, así como a la gran cantidad de enlaces por puentes de hidrógeno entre las cadenas, entre los grupos amida (ver estructura).

Elongación a rotura

El kevlar posee una elongación a rotura de entorno al 3,6 % (kevlar 29) y 2,4 % (kevlar 49) mientras que el acero rompe en torno al 1 % de su deformación. Esto hace que el kevlar sea un material más tenaz y absorba mucha mayor cantidad de energía que el acero antes de su rotura.

Tenacidad

La tenacidad (energía absorbida antes de la rotura) del kevlar es en torno a los 50 MJ m-3, frente a los 6 MJ m-3 del acero

Propiedades térmicas

El kevlar se descompone a altas temperaturas (entre 420 y 480 grados Celsius) manteniendo parte de sus propiedades mecánicas incluso a temperaturas cercanas a su temperatura de descomposición.
El módulo elástico se reduce en torno a un 20 % cuando se emplea la fibra a 180 grados Celsius durante 500 h. Esta propiedad, junto con su resistencia química, hacen del kevlar un material muy utilizado en equipos de protección.

Otras propiedades

  • Conductividad eléctrica baja;
  • Alta resistencia química;
  • Contracción termal baja;
  • Alta dureza;
  • Estabilidad dimensional excelente;
  • Alta resistencia al corte.





No hay comentarios:

Publicar un comentario